Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 6(1): 743, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463969

ABSTRACT

Blood phagocytes, such as neutrophils and monocytes, generate reactive oxygen species (ROS) as a part of host defense response against infections. We investigated the mechanism of Fcγ-Receptor (FcγR) mediated ROS production in these cells to understand how they contribute to anti-malarial immunity. Plasmodium falciparum merozoites opsonized with naturally occurring IgG triggered both intracellular and extracellular ROS generation in blood phagocytes, with neutrophils being the main contributors. Using specific inhibitors, we show that both FcγRIIIB and FcγRIIA acted synergistically to induce ROS production in neutrophils, and that NADPH oxidase 2 and the PI3K intracellular signal transduction pathway were involved in this process. High levels of neutrophil ROS were also associated with protection against febrile malaria in two geographically diverse malaria endemic regions from Ghana and India, stressing the importance of the cooperation between anti-malarial IgG and neutrophils in triggering ROS-mediated parasite killing as a mechanism for naturally acquired immunity against malaria.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Humans , Neutrophils/metabolism , Receptors, IgG/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Immunoglobulin G/metabolism
2.
Heliyon ; 9(1): e13092, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36711279

ABSTRACT

Objectives: Fulani in Africa are known to be less susceptible to Plasmodium falciparum (Pf) malaria. This study explored a potential involvement of antibody-mediated merozoite phagocytosis mechanism in this natural protection against malaria. Methods: Before the start of the malaria transmission season (MTS) in Benin, the functionality of antibodies against Pf merozoites was determined by the opsonic phagocytosis (OP) assay in plasma samples from Fulani, Bariba, Otamari and Gando groups. These individuals were actively followed-up for malaria detection from the beginning to the end of MTS. Anti-GLURP Immunoglobulin G antibody quantification, malaria Rapid Diagnostic Test (RDT) and spleen palpation were performed before and after MTS. Results: In Bariba, Otamari and Gando, but not in Fulani, plasma from adults promoted higher levels of OP than the children (P = 0.003; P = 0.012; P = 0.031 and P = 0.122). A high proportion of Fulani children had higher OP and anti-GLURP (P < 0.0001) antibody levels as compared to non-Fulani children; whereas this was not observed for Fulani adults (P = 0.223). High OP levels before MTS were significantly related to negative RDT after MTS (P = 0.011). Conclusion: Our results highlight the ability of opsonizing antibodies to potentially enhance natural protection of young Fulani individuals against Pf malaria in Benin.

3.
Malar J ; 21(1): 356, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36447200

ABSTRACT

BACKGROUND: Immunoglobulin G (IgG) antibodies are thought to play important roles in the protection against Plasmodium falciparum (P. falciparum) malaria. A longitudinal cohort study performed in the Southern part of Benin, identified a group of infants who were able to control asymptomatic malaria infections (CAIG). METHODS: IgG antibodies against distinct merozoite antigens were quantified in plasma from Beninese infants. Functionality of these antibodies was assessed by the merozoite-phagocytosis assay using THP-1 cells and primary neutrophils as effector cells. Gm allotypes were determined by a serological method of haemagglutination inhibition. RESULTS: Purified IgG from infants in CAIG promoted higher levels of merozoite-phagocytosis than did IgG from children who were unable to control asymptomatic infections (Ologit multivariate regression model, Coef. = 0.06, 95% CI 0.02;0.10, P = 0.002). High level of merozoite-phagocytosis activity was significantly associated with high levels of IgG against AMA1 (Coef. = 1.76, 95% CI 0.39;3.14, P = 0.012) and GLURP-R2 (Coef. = 12.24, 95% CI 1.35;23.12, P = 0.028). Moreover, infants of the G3m5,6,10,11,13,14,24 phenotype showed higher merozoite-phagocytosis activity (Generalized linear model multivariate regression, Coef. = 7.46, 95% CI 0.31;14.61, P = 0.041) than those presenting other G3m phenotypes. CONCLUSION: The results of the present study confirm the importance of antibodies to merozoite surface antigens in the control of asymptomatic malaria infection in Beninese infants. The study also demonstrated that G3m phenotypes impact the functional activity of IgG. This last point could have a considerable impact in the research of candidate vaccines against malaria parasites or other pathogens.


Subject(s)
Malaria, Falciparum , Malaria , Child , Infant , Animals , Humans , Merozoites , Plasmodium falciparum , Asymptomatic Infections , Longitudinal Studies , Phagocytosis , Leukocytes , Immunoglobulin G
4.
Commun Biol ; 4(1): 984, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34413459

ABSTRACT

Antibody-mediated opsonic phagocytosis (OP) of Plasmodium falciparum blood-stage merozoites has been associated with protection against malaria. However, the precise contribution of different peripheral blood phagocytes in the OP mechanism remains unknown. Here, we developed an in vitro OP assay using peripheral blood leukocytes that allowed us to quantify the contribution of each phagocytic cell type in the OP of merozoites. We found that CD14 + +CD16- monocytes were the dominant phagocytic cells at very low antibody levels and Fc gamma receptor (FcγR) IIA plays a key role. At higher antibody levels however, neutrophils were the main phagocytes in the OP of merozoites with FcγRIIIB acting synergistically with FcγRIIA in the process. We found that OP activity by neutrophils was strongly associated with protection against febrile malaria in longitudinal cohort studies performed in Ghana and India. Our results demonstrate that peripheral blood neutrophils are the main phagocytes of P. falciparum blood-stage merozoites.


Subject(s)
Fever/physiopathology , Malaria, Falciparum/physiopathology , Merozoites/physiology , Neutrophils/physiology , Phagocytosis , Plasmodium falciparum/physiology , Fever/parasitology , Malaria, Falciparum/parasitology
5.
Nat Commun ; 12(1): 324, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436573

ABSTRACT

The rapid development of a SARS-CoV-2 vaccine is a global priority. Here, we develop two capsid-like particle (CLP)-based vaccines displaying the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. RBD antigens are displayed on AP205 CLPs through a split-protein Tag/Catcher, ensuring unidirectional and high-density display of RBD. Both soluble recombinant RBD and RBD displayed on CLPs bind the ACE2 receptor with nanomolar affinity. Mice are vaccinated with soluble RBD or CLP-displayed RBD, formulated in Squalene-Water-Emulsion. The RBD-CLP vaccines induce higher levels of serum anti-spike antibodies than the soluble RBD vaccines. Remarkably, one injection with our lead RBD-CLP vaccine in mice elicits virus neutralization antibody titers comparable to those found in patients that had recovered from COVID-19. Following booster vaccinations, the virus neutralization titers exceed those measured after natural infection, at serum dilutions above 1:10,000. Thus, the RBD-CLP vaccine is a highly promising candidate for preventing COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , Capsid/immunology , Protein Binding/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Viral/immunology , COVID-19/prevention & control , Female , Humans , Immunogenicity, Vaccine , Kinetics , Mice , Mice, Inbred BALB C , Protein Binding/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Serologic Tests , Spike Glycoprotein, Coronavirus/immunology
6.
Infect Immun ; 88(4)2020 03 23.
Article in English | MEDLINE | ID: mdl-31964745

ABSTRACT

Development of a successful blood-stage vaccine against Plasmodium falciparum malaria remains a high priority. Immune-epidemiological studies are effective tools for the identification of antigenic targets of naturally acquired immunity (NAI) against malaria. However, differences in study design and methodology may compromise interstudy comparisons. Here, we assessed antibody responses against intact merozoites and a panel of 24 recombinant merozoite antigens in longitudinal cohort studies of Ghanaian (n = 115) and Indian (n = 121) populations using the same reagents and statistical methods. Anti-merozoite antibodies were associated with NAI in both the Indian (hazard ratio [HR] = 0.41, P = 0.020) and the Ghanaian (HR = 0.17, P < 0.001) participants. Of the 24 antigen-specific antibodies quantified, 12 and 8 were found to be protective in India and Ghana, respectively. Using least absolute shrinkage and selection operator (LASSO) regression, a powerful variable subselection technique, we identified subsets of four (MSP6, MSP3.7, MSPDBL2, and Pf12) and five (cMSP33D7, MSP3.3, MSPDBL1, GLURP-R2, and RALP-1) antigens that explained NAI better than the individual antibodies in India (HR = 0.18, P < 0.001) and Ghana (HR = 0.31, P < 0.001), respectively. IgG1 and/or IgG3 subclasses against five antigens from these subsets were associated with protection. Through this comparative study, maintaining uniformity of reagents and methodology, we demonstrate that NAI across diverse geographic regions may result from antibodies to multiple antigenic targets that constitute the peripheral merozoite surface protein complexes.


Subject(s)
Adaptive Immunity , Antibodies, Protozoan/blood , Malaria, Falciparum/immunology , Membrane Proteins/immunology , Merozoites/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Ghana , Humans , India , Infant , Longitudinal Studies , Middle Aged , Young Adult
7.
Front Immunol ; 11: 606266, 2020.
Article in English | MEDLINE | ID: mdl-33505395

ABSTRACT

The cysteine-rich Pfs48/45 protein, a Plasmodium falciparum sexual stage surface protein, has been advancing as a candidate antigen for a transmission-blocking vaccine (TBV) for malaria. However, Pfs48/45 contains multiple disulfide bonds, that are critical for proper folding and induction of transmission-blocking (TB) antibodies. We have previously shown that R0.6C, a fusion of the 6C domain of Pfs48/45 and a fragment of PfGLURP (R0), expressed in Lactococcus lactis, was properly folded and induced transmission-blocking antibodies. Here we describe the process development and technology transfer of a scalable and reproducible process suitable for R0.6C manufacturing under current Good Manufacturing Practices (cGMP). This process resulted in a final purified yield of 25 mg/L, sufficient for clinical evaluation. A panel of analytical assays for release and stability assessment of R0.6C were developed including HPLC, SDS-PAGE, and immunoblotting with the conformation-dependent TB mAb45.1. Intact mass analysis of R0.6C confirmed the identity of the product including the three disulfide bonds and the absence of post-translational modifications. Multi-Angle Light Scattering (MALS) coupled to size exclusion chromatography (SEC-MALS), further confirmed that R0.6C was monomeric (~70 kDa) in solution. Lastly, preclinical studies demonstrated that the R0.6C Drug Product (adsorbed to Alhydrogel®) elicited functional antibodies in small rodents and that adding Matrix-M™ adjuvant further increased the functional response. Here, building upon our past work, we filled the gap between laboratory and manufacturing to ready R0.6C for production under cGMP and eventual clinical evaluation as a malaria TB vaccine.


Subject(s)
Biotechnology , Industrial Microbiology , Lactobacillus/metabolism , Malaria Vaccines/biosynthesis , Malaria, Falciparum/prevention & control , Membrane Glycoproteins/biosynthesis , Protozoan Proteins/biosynthesis , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Protozoan/immunology , Drug Compounding , Immunization , Immunogenicity, Vaccine , Lactobacillus/genetics , Malaria Vaccines/chemistry , Malaria Vaccines/genetics , Malaria Vaccines/pharmacology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Membrane Glycoproteins/pharmacology , Mice , Nanoparticles , Protein Conformation , Protein Folding , Protein Stability , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/pharmacology , Saponins/pharmacology , Structure-Activity Relationship , Vaccines, Synthetic/biosynthesis , Vaccines, Synthetic/pharmacology
8.
J Infect Dis ; 220(2): 275-284, 2019 06 19.
Article in English | MEDLINE | ID: mdl-30820557

ABSTRACT

BACKGROUND: The specific targets of functional antibodies against Plasmodium falciparum merozoites remain largely unexplored and, more importantly, their relevance to naturally acquired immunity in longitudinal cohort studies (LCSs) is yet to be tested. METHODS: Functionality of immunoglobulin G (IgG) antibodies against 24 merozoite antigens was determined at the baseline of an LCS in Ghana using a bead-based opsonic phagocytosis assay (BPA). Antigen-specific IgG3 subclass antibodies were quantified in the same samples by the Luminex multiplex system. RESULTS: A wide range of BPA activity was observed across the different antigens. High BPA responses of nMSP3K1, GLURP-R2, MSP23D7, MSP119k, and PfRh2-2030 coupled beads were significantly associated with a higher probability of children not experiencing febrile malaria. Children with high breadth of functional antibodies against these antigens together with cMSP33D7 had a significantly reduced risk of febrile malaria (adjusted hazard ratio, 0.36 [95% confidence interval, .18-.72]; P = .004). Five of the 6 BPA activities significantly (likelihood ratio rest, P ≤ .05) contributed to the protective immunity observed with the IgG3 antibodies. CONCLUSIONS: The development of BPA allowed profiling of functional antibodies in an LCS. Identification of targets of opsonic phagocytosis may have implications in the development of a subunit malaria vaccine.


Subject(s)
Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Merozoites/immunology , Phagocytosis/immunology , Plasmodium falciparum/immunology , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Child , Child, Preschool , Female , Ghana , Humans , Immunity/immunology , Immunoglobulin G/immunology , Infant , Longitudinal Studies , Malaria, Falciparum/parasitology , Male , Protozoan Proteins/immunology
9.
J Infect Dis ; 218(6): 956-965, 2018 08 14.
Article in English | MEDLINE | ID: mdl-29733355

ABSTRACT

Background: The collection of clinical data from a tribal population in a malaria-endemic area of India suggests the occurrence of naturally acquired immunity (NAI) against Plasmodium falciparum malaria. Methods: Quantity and functionality of immunoglobulin G (IgG) antibodies against intact merozoites and recombinant proteins were assessed in a 13-month longitudinal cohort study of 121 individuals, 3-60 years of age. Results: Opsonic phagocytosis of merozoites activity was strongly associated (hazard ratio [HR] = 0.34; 95% confidence interval [CI] = .18-.66; P = .0013) with protection against febrile malaria. Of the different IgG subclasses, only IgG3 antibodies against intact whole merozoites was significantly associated with protection against febrile malaria (HR = 0.47; 95% CI = .26-.86; P = .01). Furthermore, a combination of IgG3 antibody responses against Pf12, MSP3.7, MSP3.3, and MSP2FC27 was strongly associated with protection against febrile malaria (HR = 0.15; 95% CI, .06-.37; P = .0001). Conclusions: These data suggest that NAI may, at least in part, be explained by opsonic phagocytosis of merozoites and IgG3 responses against whole merozoites, and in particular to a combination of 4 antigens is critical in this population. These results may have implications in the development of a subunit malaria vaccine. Opsonic phagocytosis of Plasmodium falciparum merozoites was associated with protection against clinical malaria in an India population. Antibody profiling identified four merozoite antigens (Pf12, MSP3.7, MSP3.3, and MSP2) as targets of protective Immunoglobuline G3 antibodies.


Subject(s)
Antibodies, Protozoan/blood , Endemic Diseases/prevention & control , Malaria, Falciparum/immunology , Merozoites/immunology , Plasmodium falciparum/drug effects , Adaptive Immunity , Adolescent , Adult , Child , Child, Preschool , Female , Humans , India/epidemiology , Longitudinal Studies , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Male , Middle Aged , Phagocytosis , Plasmodium falciparum/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...